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1 Introduction

Engineering the soil microbiome to promote nutrient 
availability needed for the plants’ initial development 
and succession is a topic of considerable interest. Bio-
fertilizers have emerged as a sustainable tool in allevi-
ating soil fertility and improving the yield of the crops 
(Ajeng et al., 2020). These organic biofertilizers may 
improve soil fertility and encourage plant development 
since they are derived from living beneficial microbes. 
Biofertilizers provide a more cost-effective and ecologi-
cally benign way to fulfill the increasing needs of food 
production than chemical fertilizers, which are hazard-
ous to both the environment and human health (Pandey et 
al., 2024). Recent advancements in biofertilizer research 
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Abstract
Purpose Biofertilizer application in the agriculture industries is deemed sustainable in the long run given its ability to restore 
fertility of soil and increase crops productivity through several direct and indirect mechanisms. However, the dissolved frac-
tion (DOM), which is made up of tiny molecules of plant and microbial origin produced by lysed cells and released metabo-
lites as influenced directly through biofertilizer amendment is unknown.
Methods An untargeted metabolomics profiling was conducted via an in vitro rhizospheric Bungor soil series incubation 
with IBG Biofertilizer from IBG Manufacturing Sdn Bhd. In this study, a comparative analysis between Ultisols samples 
inoculated with IBG biofertilizer and control samples was conducted under simulated humid tropic conditions.
Results 18 mass-to-charge ratio (m/z) values with VIP (Variable Importance in Projection) scores exceeding 1 in the IBG 
biofertilizer-inoculated Ultisol. The annotated metabolites primarily consisted of endogenous compounds, including amino 
acids, organic acids, nucleic acids, fatty acids, and amines. Notably, a signaling compound, homoserine lactone (m/z 270), 
exhibited the highest fold changes in response to IBG biofertilizer inoculation on the simulated Ultisol. Furthermore, key 
metabolic pathways such as Glycerophospholipid metabolism, Glycine, serine, and threonine metabolism, Cysteine and 
methionine metabolism, and Alanine, aspartate, and glutamate metabolism were notably affected by IBG biofertilizer inocu-
lation on the simulated soil model.
Conclusions These findings emphasized the metabolic responses induced by IBG biofertilizer in Ultisols under the simu-
lated humid tropic conditions., which suggests that biofertilizers application have some significant changes on soil metabo-
lites that overall soil productivity could be affected by these potential biomarkers. Understanding these metabolic shifts not 
only enhances crop productivity but also addresses broader questions of soil health and ecosystem sustainability in the face 
of climate change and agricultural intensification.
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emphasize the development of tailored formulations to 
address these challenges. For instance, microbial con-
sortia enriched with specific strains have been designed 
to enhance nitrogen fixation, phosphorus solubilization, 
and other essential nutrient processes (Ajeng et al. 2023; 
Behera et al. 2021).

One of the critical limitations of biofertilizers is their 
inability to provide nutrients synchronously with plant 
requirements, which can affect crop growth and yield. This 
issue is being tackled through innovations in biofertilizer 
formulation and application strategies, focusing on improv-
ing nutrient availability and efficiency (Misra et al. 2020). 
These formulations are engineered using state-of-the-art 
molecular biotechnology techniques to overcome many 
physical, chemical, and mineralogical factors governing the 
nutrient release and uptake dynamics in agricultural soils 
(Sharma et al. 2023; Yadav et al., 2016). Tropic soil micro-
bial populations play a crucial role in controlling the global 
carbon (C) cycle and biogeochemical processes underneath 
including exogenously producing soil metabolites, plants 
phytohormones and signaling compounds within in the rhi-
zospheric region.

Ultisols (from the Latin ultimus, “last”) are acidic 
forest soils with little inherent fertility. They are mostly 
found in humid temperate and tropical climates, usually 
on older, stable landscapes. Ultisols are the soil type that 
makes up most Peninsular Malaysia’s highland regions. 
Ultisols typically have finer textures and lower organic 
matter levels, limiting substrate availability and poten-
tially suppressing enzyme activity involved in carbon 
cycling. Specifically, enzymes such as β-glucosidase 
activity was reported to be notably lower in Ultisols 
which could be attributed to differences in soil tex-
ture and organic matter content (Acosta-Martínez et al. 
2007). Moreover, acid phosphatase activity, crucial for 
phosphorus cycling, showed variable responses across 
different land uses within Ultisols. The activity was gen-
erally higher in Ultisols, indicating better phosphorus 
availability in these soils. However, under agricultural 
land use, acid phosphatase activity in Ultisols decreased 
significantly compared to forest and pasture lands. This 
decline likely reflects the impact of intensive agricultural 
practices such as tillage and chemical inputs, which can 
disrupt soil structure and organic matter decomposition, 
thus affecting enzyme-mediated nutrient cycling pro-
cesses. The low soil productivity on these types of soils 
typically limits the amount of permanent crops such as 
oil palm (Elaeis guineensis) that may be produced con-
sidering more than of the permanent crops are planted 
on Ultisol. However, successful plantation on such soils 
can be achieved when appropriate soil management 
techniques are used, (Von-Uexkull and Mutert 1995; Ng 

2002). Ultisol’s key difficulties are acid reaction and high 
Al content, both of which limit P solubilization; hence, 
Ultisols need soil treatment such as calcification or fer-
tilizing. Several studies have indicated that the use of 
organic fertilizers, inorganic fertilizers, and biofertilizers 
could alleviate the acidity of the Ultisol, therefore result-
ing in the success of planting better yield crops (Zhang et 
al. 2023; Liu et al. 2018; Okebalama et al. 2020; Khamis 
et al. 2017; Cui et al. 2020). However, the impacts of 
long-term fertilization using inorganic compounds and 
chemical fertilizers may impose unknown and dangerous 
threats to the ecosystems especially on the soil metabo-
lites productions and could potentially reduce the meta-
bolic pathways activities.

Allelopathy is a phenomenon in chemical ecology 
whereby donor plants affect other recipient organisms 
by releasing their chemicals, known as allelochemicals, 
into the environment through processes like leaching, 
volatilization, secretion, and residual degradation (Rice 
1984). Metabolites produced by either plant roots or 
soil bacteria have an indirect role in the mechanisms by 
which plants alter their root microbiomes and enhance 
soil structures and aggregates. There has been evidence 
that both polar and non-polar substances can affect rhizo-
sphere interactions. More complex non-polar secondary 
metabolites like flavonoids, coumarins, and benzoxa-
zinoids, as well as polar primary metabolites like organic 
and amino acids (Rudrappa et al., 2008; Neal et al. 2012; 
Ziegler et al. 2015; van Dam and Bouwmeester 2016), 
have been reported to play a significant role in influenc-
ing rhizosphere microbes. For instance, the rhizobacte-
rial strain Pseudomonas putida KT2440, which primes 
the host’s defenses against herbivores (Neal and Ton 
2013), is attracted to the benzoxazinoid DIMBOA, which 
is released by the roots of maize seedlings.

In the context of infertile Ultisols, little is known 
about the impact of contemporary biofertilizers on prob-
lematic soils like Ultisols. Such research questions can 
be answered or at least studied using omics tools such as 
metabolomics, or the study of metabolites in biological 
matrix, including soil matrix (Baharum et al. 2023). Soil 
metabolomics should be thoroughly investigated in rela-
tion to the addition of any amendments such as organic, 
inorganic, and biological fertilizer (Pétriacq et al. 2017), 
where the mechanisms and soil metabolic networks can 
be explored by monitoring the presence of metabolites 
in the soil matrix. Metabolite changes, including species 
and quantity, are the ultimate reactions of biological sys-
tems to internal or external stimuli like gene mutations 
or environmental stress (Fiehn et al., 2002). To investi-
gate metabolic pathways or metabolic networks, to com-
pare and analyze metabolic differences in macroscopic 
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phenotypic phenomena among different biological indi-
viduals, and to study the metabolic response mecha-
nism of substances after different induction and stress, 
qualitative and quantitative analyses of low-molecular 
weight metabolites have been conducted (Allywood et 
al., 2021). Metabolomics is typically utilized in conjunc-
tion with transcriptome and proteome research to inves-
tigate how alterations in the physiological pathway of 
DNA → mRNA → protein → metabolite elicit responses 
to diverse environmental stimuli. The incorporation of 
statistical analysis of difference metabolites has allowed 
accurate mining due to the “high-dimensional and mas-
sive” nature of metabolomics data (Fiehn et al., 2002).

Furthermore, challenges may arise especially dur-
ing the preparation, calibration and evaluation of humid 
tropic soil simulation models where these should include 
crop variables as well as weather, soil, and management 
data required to simulate pristine-rhizospheric crop-spe-
cific conditions in the lab (in vitro) in which this study 
focuses on the oil palms cultivations. To ensure ideal 
development of the simulated humid tropic, the simu-
lated soil should be subjected to at least 85% following 
oil palm farming relative humidity requirement, an aver-
age of 5 h of sunshine each day, and at least 2000 mm 
annual rainfall dispersed consistently throughout the year 
with little or no dry season. Furthermore, constant aver-
age temperatures between 24 °C and 28 °C appear to have 
ideal circumstances, with seasonal changes of less than 
6 °C. However, even in controlled experimental plots, it 
is difficult to ensure near-optimal conditions due to the 
multitude of factors and the difficulties in removing every 
single limiting factor across space and time (Cassman et 
al. 2003). These limiting factors include (i) the preva-
lence of insect pests and pathogens, which is particularly 
problematic in the humid tropics. Therefore, a soil simu-
lation model was used to simulate all the humid tropics 
conditions subjected to Ultisols to test the potential of 
biofertilizer on soil metabolic activity in vitro, where our 
work takes a first step in bridging this knowledge gap.

2 Materials and Methods

2.1 Experimental Setup

The study was conducted at the Molecular Bacteriol-
ogy and Toxicology Lab, Level 2, Block J12, Faculty of 
Science, University of Malaya, Kuala Lumpur, Malay-
sia. Samples of acidic soil from the Bungor series were 
collected in Gemas, Negeri Sembilan, Malaysia. Each 
treatment was replicated three times. The treatments com-
prised [T1]: No Inoculation (Room Temperature), [T2]: 

Control Simulated Tropical Soil, and [T3]: IBG Inocu-
lated Simulated Tropical Soil. The collected soil was air-
dried for seven days at Rimba Ilmu, Universiti Malaya, 
Kuala Lumpur, Malaysia. Afterward, it was sieved to 
eliminate any leaves, stones, and weeds, resulting in a 
finer soil with a mesh size of 500 μm. The soil was then 
apportioned into four jars, each containing 50 g of soil. 
Autoclaving at 121 °C for 30 min was employed to elimi-
nate microorganisms. Subsequently, the soil was allowed 
to acclimate for a period of 17 days. A 5 ml portion of 
IBG biofertilizer was diluted by combining it with 1.5 L 
of distilled water. Ten milliliters of this mixture were 
then added to each jar of soil, which was subsequently 
incubated for 14 weeks in an aerobic environment. The 
entire experimental duration spanned four months.

2.2 Microbial Metabolomes Extraction

Following the incubation time, three samples of 2 g soil 
from each treatment jar were measured and deposited 
in a tube. A glass serological pipette was used to apply 
eight milliliters of nonpolar extractant (50% ethyl ace-
tate + 50% water) to each 2 g sample. To achieve appro-
priate sample mobility and extraction, the samples were 
oriented on a tube rack at about 45 °C on a chilled orbital 
shaker and shaken at 150 rpm for 1.5 h. The samples were 
then centrifuged for 15 min at 3200 g. The top ethyl ace-
tate layer was then removed with a glass Pasteur pipette 
and transferred to 1.5 mL centrifuge tubes. The metab-
olite-containing ethyl acetate layer was nitrogen-dried. 
The dried ethyl acetate extracts were resuspended in 
200 μL of a C18 internal standard solution (caffeic acid) 
after being mixed with 1 mL of acetonitrile.

2.3 Liquid Chromatography-Mass Spectrometry 
Analysis

The chromatographic separation was performed using 
a Thermo Scientific C18 column (AcclaimTM Polar 
Advantage II, 3 150 mm, 3 m particle size) on an Ulti-
Mate 3000 UHPLC (Dionex) system. The gradient 
elution was carried out for 22 min using (A) water con-
taining 0.1% formic acid and (B) 100% acetonitrile as 
the mobile phase and 0.4 mL/min flow rate at 40 °C. The 
gradient was begun at 5% solvent B for 3 min (0–3 min), 
then raised to 80% solvent B for 7 min (3–10 min) and 
maintained at 80% solvent B for 5 min (10–15 min). 
Finally, the gradient was restored to 5% solvent B in 
7 min (15–22 min). The injection volume for each sample 
was 1 L, and the samples were produced by dissolving 
10 μL of sample extracts in LC-grade methanol (990 L) 
supplemented with internal standards do not present in 
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normalized data to reduce the effects of background noise 
interference on sample clustering to identify the response 
of Ultisols in different treatments. On the normalized peak 
intensity data, a one-way analysis of variance (ANOVA) 
with a significance of P < 0.05 was performed to distinguish 
the statistically significant metabolites among the treat-
ments. The variable significance in projection (VIP) rates 
each variable’s total contribution to the PLS-DA model, and 
variables with VIP > 1.0 were considered meaningful for 
group discrimination (Xie et al. 2008). Other data analysis, 
such as a heat map, was carried out using the MetaboAna-
lyst 5.0 software.

3 Results

3.1 Metabolites Profiling and Identification of In 
Vitro Simulated Humid Tropic Ultisols Under Control 
and IBG Biofertilizer Amendment

Figure 2 presents the multivariate analysis of the unsuper-
vised PCA scores plot and supervised PLS-DA score plot 
from the metabolite profiling analysis conducted on an in 
vitro simulated Ultisol. The study investigated the impact of 
both control conditions and the introduction of biofertilizer 
amendment on the metabolite composition within the Ulti-
sol. Through meticulous metabolomic analytical techniques, 
we aimed to elucidate the intricate metabolic responses elic-
ited by the biofertilizer, providing valuable insights into its 
potential for enhancing soil nutrient dynamics and fostering 
sustainable agricultural practices.

To conduct a meaningful metabolomics study, the Ulti-
sols extract must accurately replicate the original matrix; 
hence, the harvesting and extraction processes are crucial. 
Soil sampling should be standardized in terms of the sam-
pling location, depth, rhizospheric conditions, and extrac-
tion should be reproducible and capable of keeping the 
compounds stable in solution. In the subsequent profiling 
analysis, we opted for positive ionization mode. Here, the 
MS1 spectra underwent additional fragmentation to gener-
ate MS2 mass spectrograms, which were then compared 
against a database of standard materials. These spectra were 
evaluated to obtain matching results, leading to the identifi-
cation of MS2 fragments corresponding to the metabolites. 
Following this process, and subsequent filtering and bucket-
ing utilizing Bruker Compass ProfileAnalysis, we achieved 
successful profiling of a total of 1761 peaks, with an average 
of 195.7 peaks per sample.

The unsupervised PCA shown in Fig. 2 (A– C), provides 
a visual representation of sample relationships in a multi-
dimensional space. Each point on the plot corresponds to a 
specific sample, and their positions reflect their proximity 

the examined sample. The Bruker Daltonics MicrOTOF-
Q III was used for high-resolution mass spectrometry 
analysis, with the following settings: capillary voltage at 
4,500 V, nebulizer pressure at 1.2 bar, drying gas flow at 
8 μL/min, source temperature at 200 °C, and m/z range of 
50 to 1,000 Da. Prior to the metabolite profiling LC-MS 
analysis, the electrospray ionization (ESI) method was 
compared. Most of the metabolites detected in the nega-
tive mode were also present in the positive mode total ion 
chromatogram (data not shown). As a result of profiling 
a greater number of metabolites, the positive ESI mode 
was chosen. Tandem mass spectrometry (MS2) analysis 
was carried out for each treatment utilizing pooled dupli-
cates of all extracts in equal quantities and automated 
fragmentation settings (Auto-MS2) spanning a mass-to-
charge precursor ion range of 500 to 1,000 Da (Vargas et 
al., 2016).

2.4 Mass Spectrometry Data Processing

The raw data for mass spectrometry was retrieved from 
Bruker DataAnalysis (version 4.1) and aligned with Bruker 
Compass ProfileAnalysis (version 2.1). The advanced 
bucketing setting was used, with the following parameters: 
1 m/z = 20 mDa, 1rt = 10 s, signal-to-noise ratio thresh-
old = 5, and smoothing width = 4. Metabolites chosen based 
on the highest score with a low molecular mass error toler-
ance range (1 ppm = 5) and manually matched to accessible 
public databases MassBank, MetFrag with PubChem data-
base (Horai et al. 2010) for putative metabolite identifica-
tion. Putative metabolites with molecular weights within the 
molecular mass error tolerance range of 1–20 ppm to the 
query m/z values were found from databases using positive 
mode adduct. Full-scan LC-MS data were collected for sta-
tistical analysis to identify molecular ions with significant 
differences across samples, which were then followed by 
independent precursor ion (PI) scans to collect MS2 data 
from the PIs.

2.5 Statistical Analysis

Data Analysis software was used to collect all mass spec-
trum data (version 4.0, Bruker Daltonics). Profile analysis 
software (Bruker Daltonics) was used to process the raw 
data (.d) files, which included peak alignment and normal-
ization. Metaboanalyst 5.0 (USA) to perform multivariate 
statistical analysis, including principal component analysis 
(PCA) and partial least square-discriminant analysis (PLS-
DA) were applied to cluster samples according to the pro-
filed metabolite features and to identify distinct metabolites 
that differentiate between the treatments. The data was pre-
processed with Pareto (Par) scaling which was applied to the 
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significant are considered noteworthy, potentially serving as 
biological or chemical markers.

Based on the one-way analysis of variance (ANOVA), 
50 m/z values (VIP values > 1) corresponding to metabo-
lites present in the sample matrix are detected. Among 
these, 26 m/z values were associated with the treatment 
involving IBG biofertilizer on amended simulated Ultisols 
with Variable Importance in Projection (VIP) value (>) 1. 
These 26 m/z values could potentially serve as biomarkers 
or chemical indicators of biofertilizer application in infertile 
Ultisols conditions. Our primary focus was on metabolite 
features with high abundance and those identified as VIPs. 
We pursued putative identification by meticulously com-
paring accurate masses, fragmentation patterns, and MS2 
spectral data with entries in public metabolite databases like 
MetFrag and MassBank. This approach was chosen due to 
the labor-intensive nature of metabolite identification. The 
VIP values from the first two main components of the mul-
tivariate PLS-DA model, in conjunction with p-values and 
fold changes, were employed to sift through differentially 
expressed metabolites. Our criteria for selection were a fold 
change of 2, VIP score of 1, and a q-value of 0.05. The dis-
tinctive 26 VIP values associated with the IBG treatments 
were discerned using MetFrag. The identity of the detected 
compounds, along with the m/z values and retention time 
were listed side-by-side and shown in the heatmap visual-
ization (Fig. 3).

or dissimilarity to other samples. The dispersion of samples 
is directly linked to variations in metabolite compositions. 
Samples with greater similarities cluster closer together, 
while those with significant differences are positioned 
further apart on the PCA plot. This analysis offers valu-
able insights into the underlying patterns and relationships 
within the metabolite profiles of the samples under investi-
gation. Although no outliers were observed, the separation 
explained only 37.5% of the variance in the first principal 
component, respectively. The cumulative R2 and Q2 values, 
both exceeding 0.8, indicate minimal variation between 
biological replicates, underscoring the effectiveness of the 
in vitro simulations. Conversely, lower cumulative values 
might be expected in field-based samplings, where environ-
mental factors exert a more prominent influence.

Subsequently, a supervised partial least squares-discrim-
inant analysis (PLS-DA) was conducted for sample cluster-
ing (Fig. 2 (D-F)). Notably, the separation predominantly 
occurred along the second component, accounting for 
29.3% of the variances. This model, characterized by a pre-
dictive value (Q2) lower than R2Y, reflects a well-balanced 
fit and is corroborated by a permutation test, ruling out over-
fitting. The PLS-DA loading plot illustrates the metabolite 
characteristics responsible for species discrimination. Those 
projecting furthest from the center exert the most influence. 
Additionally, alongside VIP scores, univariate statistical 
analysis aids in pinpointing statistically significant metabo-
lites by assessing intensity differences among metabolite 
features in each sample. Only features deemed statistically 

Fig. 1 Schematic diagram of the procedure used for experimental set-up and metabolome extraction
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whether a specific set of compounds appears more frequently 
in the user-uploaded compound list than would be expected 
by random chance. In the context of pathway analysis, 
ORA was the most accurate in terms of pathways matching 
which assessed whether the compounds detected in control 
and IBG biofertilizer (treatment) groups were associated 
with a particular pathway show an enrichment compared 
to what might occur by random chance alone. This evalu-
ation was carried out using statistical tests such as Fisher’s 
exact test or the hypergeometric test, which are the most 
employed methods for this type of analysis. Referencing the 

3.2 Metabolic Pathways Identification

To further assist in our understanding of the detected 
metabolites interactions, and selection of the best pathways 
detection methods, a comparison between two commonly 
used pathway analysis methods, Fig. 4(A) Topology-based 
method pathway analysis and Fig. 4(B) Over-representation 
analysis (ORA)-based method pathway analysis on anno-
tated and identified metabolites (VIP value > 1) between the 
control and the simulated treatment groups. ORA, or Over-
Representation Analysis, serves the purpose of determining 

Fig. 2 Schematic diagram of the 
procedure used for experimental 
set-up and metabolome extraction
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Purine metabolism, Nicotinate and nicotinamide metabo-
lism, Histidine metabolism, Glycerolipid metabolism, Pan-
tothenate and CoA biosynthesis, Ether lipid metabolism,

Figure 5 depicts the metabolomic pathways that were 
impacted in this study according to the pathway analysis 
conducted in Fig. 4 (A) which was based on the topologi-
cal compounds database matching methods. Among the 
pathways that were influenced were: Glycerophospholipid 

Bacillus subtillis KEGG pathways, several pathways were 
involved/affected when IBG biofertilizer was applied under 
the simulated tropic Ultisols namely: Glycerophospholipid 
metabolism, beta-Alanine metabolism, Glycine, serine and 
threonine metabolism, Cysteine and methionine metabo-
lism, Phosphonate and phosphinate metabolism, D-Gluta-
mine and D-glutamate metabolism, Arginine biosynthesis, 
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, 

Fig. 3 The heatmap analysis of the VIP scored metabolites distribution 
(compound identity / m/z values / retention time) in soil under control 
(ambience temperature 25 °C) and tropical (∼ 27 °C). The heatmap dis-
play is based on log10-transformed metabolite concentrations (pareto 

scaled). The reddish hue denotes increasing metabolite concentration, 
whereas the greenish tint shows decreasing metabolite concentration. 
Where T = IBG Inoculated Simulated Tropical Soil, C = No Inocula-
tion (Room Temperature), CT = Control Simulated Tropical Soil
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Fig. 5 Among the metabolites involved in the biosynthetic pathway of IBG biofertilizer on simulated humid tropical soil. Single arrows represent 
one-step enzymatic conversions, while dashed arrows represent multiple reactions. Reference KEGG library: Bacillus subtilis

 

Fig. 4 Comparison between two commonly used pathway analy-
sis methods (A) Topology-based method pathway analysis and (B) 
Over-representation analysis (ORA)-based method pathway analysis 
on annotated and identified metabolites (VIP value > 1) between the 

control and the simulated treatment groups where colour indications 
ranging from yellow to red) indicates that the metabolites are present 
in the data at changing degrees of significance
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4 Discussion

As metabolomics evolves as an area of research with a wide 
range of applications across disciplines, drawing meaning-
ful conclusions from such data becomes increasingly vital. 
ORA is one of the most often utilized methods for deriv-
ing functional interpretations from metabolomics data. The 
list of compounds of interest (typically corresponding to 
metabolites that change between conditions in experiments) 
is an important input for ORA, and we have shown that how 
these compounds are chosen has a significant influence on 
pathway analysis findings. The m/z value 270.928 had the 
highest VIP value of 2.148 and was putatively identified in 
the IBG biofertilizer amended simulated humid tropic Ulti-
sols (T treatment), as well as minute concentrations detected 
within the uninoculated simulated humid tropic Ultisols 
(Fig. 3). Meanwhile the compound was not detected in the 
control sample. The m/z value 270.928 was identified as 
3-hydroxy-C10-homoserine lactone, a N-acylhomoserine 
lactone (AHL) family which is categorized as diffusible sig-
nal molecules employed by mainly gram-negative bacteria 
(Ortori et al. 2007).

Homoserine lactones are involved in a cell-to-cell com-
munication mechanism known as quorum sensing, which 
allows a bacterial population to determine its numerical 

metabolism, Lysine biosynthesis, Glycine, serine and threo-
nine metabolism, Cysteine and methionine metabolism, 
beta-Alanine metabolism, Monobactam biosynthesis, Cya-
noamino acid metabolism, Nicotinate and nicotinamide 
metabolism, Sulfur metabolism, Arginine biosynthesis, 
Pantothenate and CoA biosynthesis, Alanine, aspartate and 
glutamate metabolism, Galactose metabolism, Amino sugar 
and nucleotide sugar metabolism, Folate biosynthesis, Ami-
noacyl-tRNA biosynthesis, Purine metabolism. According 
to the overview, 4 pathways were prominent namely: Gly-
cine, serine and threonine metabolism, Cysteine and methi-
onine metabolism, Glycerophospholipid metabolism and 
Alanine, aspartate and glutamate metabolism. Meanwhile, 
the ORA analysis (Table 1) revealed that Glycerophospho-
lipid metabolism, beta-Alanine metabolism, Phosphonate 
and phosphinate metabolism, D-Glutamine and D-gluta-
mate metabolism might be heavily influenced following the 
IBG biofertilizer amendment (T) as compared to the C and 
CT treatments.

Table 1 Pathways analysis based on over-representation analysis (ORA) on the annotated metabolites (VIP value > 1)
Total expected hits Raw p Holm p False Discovery Rate (FDR)

Glycerophospholipid metabolism 36 0.352 4 0.000289 0.0243 0.0243
beta-Alanine metabolism 21 0.205 2 0.0168 1 0.706
Glycine, serine and threonine metabolism 33 0.322 2 0.0395 1 0.802
Cysteine and methionine metabolism 33 0.322 2 0.0395 1 0.802
Phosphonate and phosphinate metabolism 6 0.0586 1 0.0573 1 0.802
D-Glutamine and D-glutamate metabolism 6 0.0586 1 0.0573 1 0.802
Arginine biosynthesis 14 0.137 1 0.129 1 1
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 14 0.137 1 0.129 1 1
Purine metabolism 65 0.635 2 0.13 1 1
Nicotinate and nicotinamide metabolism 15 0.146 1 0.137 1 1
Histidine metabolism 16 0.156 1 0.146 1 1
Glycerolipid metabolism 16 0.156 1 0.146 1 1
Pantothenate and CoA biosynthesis 19 0.186 1 0.171 1 1
Ether lipid metabolism 20 0.195 1 0.179 1 1
Pyruvate metabolism 22 0.215 1 0.195 1 1
Propanoate metabolism 23 0.225 1 0.203 1 1
Folate biosynthesis 26 0.254 1 0.227 1 1
Galactose metabolism 27 0.264 1 0.235 1 1
Alanine, aspartate and glutamate metabolism 28 0.273 1 0.242 1 1
Phosphatidylinositol signaling system 28 0.273 1 0.242 1 1
Inositol phosphate metabolism 30 0.293 1 0.257 1 1
Amino sugar and nucleotide sugar metabolism 37 0.361 1 0.308 1 1
Fatty acid elongation 38 0.371 1 0.314 1 1
Arginine and proline metabolism 38 0.371 1 0.314 1 1
Fatty acid biosynthesis 47 0.459 1 0.374 1 1
Aminoacyl-tRNA biosynthesis 48 0.469 1 0.38 1 1
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crucial step involves two methionine synthases that facili-
tate the final transfer of the methyl group to homocysteine: 
one of these enzymes relies on cobalamin (vitamin B12), 
whereas the other does not. Notably, the latter enzyme is 
sensitive to oxidative stress. Furthermore, S-adenosylmethi-
onine (SAM) is synthesized in a single step from methio-
nine and ATP.

The acyl side chains of AHLs, which are thought to be 
derived from fatty acid biosynthesis, in which the AHL 
compound was matched to in the ORA analysis (Table 1) 
are composed of 4 to 18 carbons, generally in increments of 
two carbon units (C4, C6, C8, etc.) (Della et al., 2019). The 
majority of the acyl side chains are unbranched, saturated or 
monounsaturated, and even-numbered, matching fatty acids 
found in microbial cells. Most of the metabolites present in 
the Ultisols matrix could be endogenous metabolites such 
as the amino acids, organic acids, nucleic acids, fatty acids, 
amines where these metabolites are assessable to another 
biota within the natural environment and are most likely to 
accumulate as SOM as a result of interacting with minerals 
and negatively charged clay particles (Swenson et al. 2015).

Glutamate metabolism (GM) is among the metabolite 
pathway influenced due to the amendment of IBG biofertil-
izer where the metabolism is essential for amino acid metab-
olism, orchestrates crucial metabolic activities, and plays a 
role in pathogen defense, particularly L-glutamate, a pro-
tein-building component (Baharum et al. 2023). It is worth 
noting that glutamate is a critical metabolite in all organisms 
because it connects carbon and nitrogen metabolism. The 
interaction between N metabolism with the dynamics of 
other nutrients such as phosphorus and potassium would lead 
to an improved physiological development of crops such as 
the roots, as well as other plant functions that influence yield 
and quality (Farhan et al. 2024). Nitrogen is a primary com-
ponent of amino acids, proteins, and enzymes essential for 
plant growth and development. Its availability and efficient 
utilization are closely intertwined with the uptake and utili-
zation of phosphorus and potassium. Phosphorus is integral 
to energy transfer processes in plants, DNA and RNA syn-
thesis, and root development. Potassium, on the other hand, 
regulates water uptake, enzyme activation, and overall plant 
turgor pressure, influencing stomatal function and nutrient 
transport within plants (Khan et al. 2023).

Optimal nitrogen metabolism supports these functions by 
enhancing nutrient uptake and translocation. For instance, 
nitrogen stimulates root growth, thereby increasing the 
surface area for phosphorus and potassium absorption. 
Moreover, nitrogen plays a pivotal role in maintaining the 
balance between shoot and root growth, which is critical for 
the plant’s overall biomass accumulation and resilience to 
environmental stresses (Hao et al. 2023). The synergistic 
interaction between nitrogen, phosphorus, and potassium 

size (or density). AHLs are created and accumulate as the 
bacterial culture expands. Once a certain concentration of 
the chemical (and hence a certain population density) is 
reached, a coordinated shift in bacterial behavior occurs. 
Bioluminescence, conjugation, secondary metabolite syn-
thesis, biofilm formation, swimming and swarming motility, 
and pathogenicity are all controlled by AHL-dependent quo-
rum-sensing mechanisms. The detection and active expres-
sion of AHLs in the IBG inoculated simulated humid tropic 
Ultisols could positively alter the soil chemical properties 
and microbial metabolisms, which translates into healthier 
and more productive soil.

The AHL family differs in acyl chain length, substitu-
tion at carbon 3 (and degree of saturation), but all have the 
homoserine lactone ring structure. This finding was cor-
roborated by Ortori et al. (2017) where the author revealed 
that enhanced product ion (EPI) spectra of 3-oxo- C6, C7, 
C8 and C10 AHLs eluted sequentially at 1.7, 2.4, 3.3 and 
4.7 min, had nominal m/z values of 214, 228, 242 and 270 
respectively. The absence of this signaling chemical in the 
control plot might indicate that the microbial communities 
or pathogens formerly present in the soil sample matrix 
were effectively eliminated by autoclaving. However, 
microorganisms that had previously reached a dormant state 
in the soil matrix or pores may grow when favorable grow-
ing conditions such as humidity are introduced, as in the 
control simulated humid tropic (without IBG inoculation) 
treatment could be the reason behind the minute concentra-
tion of the AHLs detected within the treatment without IBG 
biofertilizer inoculation. The metabolite was then matched 
to the existing pathway database (Bacillus subtilis) and it 
was revealed that 3-hydroxy-C10-homoserine lactone is 
involved in the Glycine, serine and threonine metabolism as 
well as Cysteine and methionine metabolism. Methionine 
is produced from homoserine through a series of four steps.

The process involves three intricate reactions that substi-
tute the hydroxyl group of homoserine with -SH, leading to 
the formation of homocysteine. In E. coli, succinylation of 
the hydroxyl group with succinyl-CoA initiates these reac-
tions, while in gram-positive organisms, acetylation is the 
triggering mechanism. Cysteine is introduced in the second 
step and serves as the source of reduced sulfur. The third 
enzyme in this pathway facilitates the hydrolysis of the 
intermediate cystathionine. Interestingly, this enzyme also 
has the capability to hydrolyze cysteine and serine. How-
ever, the presence of serine inhibits this reaction, and the 
addition of exogenous serine can lead to a requirement for 
methionine. In the fourth and final step, the donation of a 
methyl group to the sulfur of homocysteine results in the 
production of methionine. This methyl group is provided by 
N5-methyltetrahydrofolate, which is generated through the 
reduction of N5, N10-methylene tetrahydrofolate. The last 
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5 Conclusion

In conclusion, this study illuminates the promising potential 
of biofertilizer as a viable solution to address soil infertil-
ity issues and elevate overall agricultural productivity using 
Ultisol. Through comprehensive untargeted metabolomics 
profiling in the context of Ultisols incubation with IBG 
Biofertilizer, we have identified key metabolites and path-
ways that respond to this intervention. The distinct shifts 
observed in metabolite profiles, particularly the remarkable 
changes in homoserine lactone levels, highlight the dynamic 
impact of IBG biofertilizer on Ultisols in simulated humid 
tropic conditions. Additionally, the significant alterations in 
essential metabolic pathways underscore the intricate inter-
play between biofertilizer application and soil biochemis-
try. These findings not only provide valuable insights into 
the biochemical intricacies of biofertilizer-induced soil 
enhancement but also offer practical implications for sus-
tainable agriculture practices in challenging environments. 
By understanding and harnessing the potential of biofertiliz-
ers, we can pave the way for more efficient and eco-friendly 
approaches to soil management, ultimately contributing to 
global food security.
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